Limits of Random Differential Equations on Manifolds
نویسنده
چکیده
Consider a family of random ordinary differential equations on a manifold driven by vector fields of the form ∑ k Ykαk(z t (ω)) where Yk are vector fields, is a positive number, z t is a 1 L0 diffusion process taking values in possibly a different manifold, αk are annihilators of ker(L0). Under Hörmander type conditions on L0 we prove that, as approaches zero, the stochastic processes y t converge weakly and in the Wasserstein topologies. We describe this limit and give an upper bound for the rate of the convergence.
منابع مشابه
Invariant manifolds for random and stochastic partial differential equations
Random invariant manifolds are geometric objects useful for understanding complex dynamics under stochastic influences. Under a nonuniform hyperbolicity or a nonuniform exponential dichotomy condition, the existence of random pseudostable and pseudo-unstable manifolds for a class of random partial differential equations and stochastic partial differential equations is shown. Unlike the invarian...
متن کاملConjugate connections and differential equations on infinite dimensional manifolds
On a smooth manifold M, the vector bundle structures of the second order tangent bundle, T M bijectively correspond to linear connections. In this paper we classify such structures for those Fréchet manifolds which can be considered as projective limits of Banach manifolds. We investigate also the relation between ordinary differential equations on Fréchet spaces and the linear connections on t...
متن کاملInvariant Manifolds for Stochastic Partial Differential Equations
Invariant manifolds provide the geometric structures for describing and understanding dynamics of nonlinear systems. The theory of invariant manifolds for both finite and infinite dimensional autonomous deterministic systems, and for stochastic ordinary differential equations is relatively mature. In this paper, we present a unified theory of invariant manifolds for infinite dimensional random ...
متن کاملar X iv : m at h / 04 09 48 5 v 1 [ m at h . D S ] 2 4 Se p 20 04 INVARIANT MANIFOLDS FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
Annals of Probability 31(2003), 2109-2135. Invariant man-ifolds provide the geometric structures for describing and understanding dynamics of nonlinear systems. The theory of invariant manifolds for both finite and infinite dimensional autonomous deterministic systems, and for stochastic ordinary differential equations is relatively mature. In this paper, we present a unified theory of invarian...
متن کاملBackward Stochastic Differential Equations on Manifolds
The problem of finding a martingale on a manifold with a fixed random terminal value can be solved by considering BSDEs with a generator with quadratic growth. We study here a generalization of these equations and we give uniqueness and existence results in two different frameworks, using differential geometry tools. Applications to PDEs are given, including a certain class of Dirichlet problem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016